The plant vesicle-associated SNARE AtVTI1a likely mediates vesicle transport from the trans-Golgi network to the prevacuolar compartment.
نویسندگان
چکیده
Membrane traffic in eukaryotic cells relies on recognition between v-SNAREs on transport vesicles and t-SNAREs on target membranes. Here we report the identification of AtVTI1a and AtVTI1b, two Arabidopsis homologues of the yeast v-SNARE Vti1p, which is required for multiple transport steps in yeast. AtVTI1a and AtVTI1b share 60% amino acid identity with one another and are 32 and 30% identical to the yeast protein, respectively. By suppressing defects found in specific strains of yeast vti1 temperature-sensitive mutants, we show that AtVTI1a can substitute for Vti1p in Golgi-to-prevacuolar compartment (PVC) transport, whereas AtVTI1b substitutes in two alternative pathways: the vacuolar import of alkaline phosphatase and the so-called cytosol-to-vacuole pathway used by aminopeptidase I. Both AtVTI1a and AtVTI1b are expressed in all major organs of Arabidopsis. Using subcellular fractionation and immunoelectron microscopy, we show that AtVTI1a colocalizes with the putative vacuolar cargo receptor AtELP on the trans-Golgi network and the PVC. AtVTI1a also colocalizes with the t-SNARE AtPEP12p to the PVC. In addition, AtVTI1a and AtPEP12p can be coimmunoprecipitated from plant cell extracts. We propose that AtVTI1a functions as a v-SNARE responsible for targeting AtELP-containing vesicles from the trans-Golgi network to the PVC, and that AtVTI1b is involved in a different membrane transport process.
منابع مشابه
The t-SNARE AtVAM3p resides on the prevacuolar compartment in Arabidopsis root cells.
Protein cargo is trafficked between the organelles of the endomembrane system inside transport vesicles, a process mediated by integral membrane proteins called SNAREs (soluble N-ethylmaleimide sensitive factor attachment protein receptors) that reside on the surface of the vesicle (v-SNAREs) and target membrane (t-SNAREs). In examining transport of cargo between the trans-Golgi network and the...
متن کاملSystematic analysis of SNARE molecules in Arabidopsis: dissection of the post-Golgi network in plant cells.
In all eucaryotic cells, specific vesicle fusion during vesicular transport is mediated by membrane-associated proteins called SNAREs (soluble N-ethyl-maleimide sensitive factor attachment protein receptors). Sequence analysis identified a total of 54 SNARE genes (18 Qa-SNAREs/Syntaxins, 11 Qb-SNAREs, 8 Qc-SNAREs, 14 R-SNAREs/VAMPs and 3 SNAP-25) in the Arabidopsis genome. Almost all of them we...
متن کاملAtVPS45 complex formation at the trans-Golgi network.
The Sec1p family of proteins are thought to be involved in the regulation of vesicle fusion reactions through interaction with t-SNAREs (target soluble N-ethylmaleimide-sensitive factor attachment protein receptors) at the target membrane. AtVPS45 is a member of this family from Arabidopsis thaliana that we now demonstrate to be present on the trans-Golgi network (TGN), where it colocalizes wit...
متن کاملA putative vacuolar cargo receptor partially colocalizes with AtPEP12p on a prevacuolar compartment in Arabidopsis roots.
Targeting of protein cargo to the vacuole/lysosome is a multistep process that appears to have conserved features between mammalian, yeast, and plant cells. In each case, some soluble vacuolar/lysosomal proteins are believed to be bound by transmembrane cargo receptors in the trans-Golgi network (TGN) that redirect these proteins into clathrin-coated vesicles. These vesicles then appear to be t...
متن کاملA human homolog can functionally replace the yeast vesicle-associated SNARE Vti1p in two vesicle transport pathways.
Membrane traffic in eukaryotic cells requires the interaction of a vesicle-associated soluble NSF attachment protein receptor (v-SNARE) on transport vesicles with a SNARE on the target membrane (t-SNARE). Recently, we identified the yeast protein Vti1p as a v-SNARE that is involved in two transport reactions. Vti1p interacts with the prevacuolar t-SNARE Pep12p in Golgi to prevacuolar transport ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology of the cell
دوره 10 7 شماره
صفحات -
تاریخ انتشار 1999